Autopoiesis refers to a system that is capable of creating, maintaining and reproducing itself. Autopoietic mechanisms can operate as self-generating feedback systems.

Historical Frame

The term was introduced in 1972 by Chilean biologists Humberto Maturana and Francisco Varela to define the self-maintaining chemistry of living cells. Since then the concept has been also applied to the fields of systems theory and sociology.

Autopoiesis was originally presented as a system description that was said to define and explain the nature of living systems. A canonical example of an autopoietic system is the biological cell. The eukaryotic cell, for example, is made of various biochemical components such as nucleic acids and proteins, and is organized into bounded structures such as the cell nucleus, various organelles, a cell membrane and cytoskeleton. These structures, based on an external flow of molecules and energy, produce the components which, in turn, continue to maintain the organized bounded structure that gives rise to these components.

Autopoiesis: Components - Boundary - Processes


Related concepts

Allopoietic system

An autopoietic system is to be contrasted with an allopoietic system, such as a car factory, which uses raw materials (components) to generate a car (an organized structure) which is something other than itself (the factory). However, if the system is extended from the factory to include components in the factory's 'environment', such as supply chains, plant / equipment, workers, dealerships, customers, contracts, competitors, cars, spare parts and so on, then as a total viable system it could be considered to be autopoietic. Thus, an autopoietic system is a closed topological space that continuously generates and specifies its own organization. It maintains this through its operation as a system of production of its own components, and does this in an endless turnover of components. Autopoietic systems are thus distinguished from allopoietic systems, which have as the product of their functioning something different from themselves.


A theory of how autopoietic systems operate is named Practopoiesis (praxis + poiesis, meaning creation of actions). The theory presumes that, although the system as a whole is autopoietic, the components of that system may have allopoietic relations. For example, the genome combined with the operations of the gene expression mechanisms create proteins, but not the other way around; proteins do not create genomes. In that case poiesis occurs only in one direction. Practopoietic theory presumes such one-directional relationships of creation to take place also at other levels of system organisation.

Self-organizing Intelligence

Many scientists have often used the term autopoiesis as a synonym for self-organization. An autopoietic system is autonomous and operationally closed, in the sense that there are sufficient processes within it to maintain the whole. Autopoietic systems are "structurally coupled" with their medium, embedded in a dynamic of changes that can be recalled as sensory-motor coupling. This continuous dynamic is considered as a rudimentary form of knowledge or cognition and can be observed throughout life-forms. Autopoiesis would be the process of the emergence of necessary features out of chaotic contingency, causing contingency's gradual self-organisation, thus leading to the gradual rise of order out of chaos.

Linguistic derivation

The term Autopoiesis is derived from ancient Greek words auto- (αὐτo-) meaning "self", and poiesis (ποίησις), meaning "creation" or  "production". 

External sources

Book: Maturana, H., & Varela, F. (1992). The tree of knowledge: The biological roots of human understanding. Boston: Shambhala.


Internal links


» Terminology